Las plantas responden a los estímulos de sus ambientes internos y externos. Estas respuestas les permiten desarrollarse normalmente y mantenerse en contacto con las condiciones cambiantes que imperan en el medio en que viven.
Las hormonas son factores importantes en las respuestas de las plantas. Una hormona es un producto químico producido en tejidos particulares de un organismo y llevado a otros tejidos de ese organismo, donde ejerce una o más influencias específicas. Característicamente, una hormona es activa en cantidades extremadamente pequeñas.
Nuestro conocimiento de las hormonas vegetales y de sus efectos sobre el crecimiento comenzó con el estudio del fototropismo. Éste sigue siendo un punto de partida apropiado en la consideración de las respuestas de las plantas. Los cinco grupos principales de hormonas que han sido aisladas de las plantas son las auxinas, citocininas, etileno, ácido abscísico y giberelinas. También pueden estar presentes otras sustancias reguladoras del crecimiento.
Las plantas responden a diversos estímulos ambientales. El fototropismo -la curvatura de una planta hacia la luz- y el geotropismo -la capacidad del vástago para crecer hacia arriba y de la raíz para crecer hacia abajo- son dos respuestas que otorgan un alto valor de supervivencia a las plantas jóvenes. En muchas regiones de la biosfera, los cambios ambientales más importantes que afectan a las plantas (y, de hecho, a los organismos terrestres en general) son los que resultan del cambio de las estaciones. La respuesta de los organismos a cambios en la duración relativa de los períodos de luz y oscuridad en un ciclo de 24 horas se denomina fotoperiodicidad. Esta respuesta controla la iniciación de la floración en muchas plantas.
Los ciclos regulares de crecimiento y actividad que ocurren aproximadamente cada 24 horas se denominan ritmos circadianos. Estos ritmos son controlados por un oscilador endógeno -el reloj biológico -. La principal función del reloj biológico, aparentemente, es suministrar el mecanismo de medición del tiempo necesario para los fenómenos de fotoperiodicidad.
Algunas especies vegetales muestran movimientos específicos, rápidos, que se producen como respuesta al tacto. Además, todas las plantas vasculares parecen responder a otros estímulos mecánicos con patrones de crecimiento alterados, lo que da como resultado plantas más bajas y robustas. Muchas angiospermas también pueden liberar sustancias volátiles, lo que constituye una comunicación química con otros individuos de la misma especie.
Ritmos circadianos y relojes biológicos
¿Cómo puede una planta de espinaca distinguir un día de 14 horas de un día de 13,5 horas? La medición del fotoperíodo requiere, por un lado, de fotorreceptores que permitan distinguir el día de la noche y, por otro lado, de un mecanismo que mida las horas de oscuridad. En cuanto a los fotorreceptores, se sabe que tanto los fitocromos como los criptocromos están involucrados. El tema pendiente es, ¿cómo miden las plantas la duración del período de oscuridad?
Esta pregunta nos lleva a otro grupo de fenómenos fácilmente observables. Algunas especies de plantas tienen flores que se abren por la mañana y se cierran al atardecer. Otras extienden sus hojas a la luz del Sol y las pliegan hacia el tallo durante la noche.
Una hipótesis reciente, pero aún sin pruebas, es que los “movimientos de sueño” evitan que las hojas absorban la luz que refleja la luna en las noches muy claras, protegiendo los fenómenos fotoperiódicos.
Estos movimientos diurnos continúan aunque las plantas se mantengan en condiciones lumínicas constantes. Actividades menos evidentes, tales como la fotosíntesis, la producción de auxinas y la tasa de inhibición celular, también tienen ritmos diarios. Los ritmos que continúan con un período cercano a 24 horas aun cuando todas las condiciones del ambiente se mantengan constantes se llaman ritmos circadianos y se han encontrado en todos los organismos eucarióticos y en algunos procarióticos.
Si bien la persistencia de los ritmos circadianos bajo condiciones lumínicas constantes sugiere que son generados por un oscilador endógeno, durante varios años, los biólogos debatieron acerca de si estos ritmos podrían estar determinados por alguna fuerza ambiental poco perceptible, como los rayos cósmicos, el campo magnético o la rotación de la Tierra.
Virtualmente, todos los biólogos están de acuerdo ahora en que los ritmos circadianos son endógenos, o sea, se originan dentro del propio organismo y son controlados por lo que se conoce como reloj biológico. La evidencia que apoya la idea del reloj biológico interno es que, en condiciones ambientales constantes, los ritmos circadianos tienen períodos que no son de 24 horas exactas. Diferentes especies y diferentes individuos de la misma especie suelen tener ritmos ligeramente diferentes, pero constantes, a menudo de hasta una o dos horas más largos o más cortos que 24 horas.
Dado que el período endógeno de los ritmos no es exactamente igual a 24 horas, en condiciones naturales los relojes deben ser diariamente ajustados o sincronizados por el ambiente. Los factores más importantes en la sincronización de los relojes son las transiciones luz/oscuridad que ocurren al atardecer y al amanecer. Actualmente se sabe que tanto los fitocromos como los criptocromos son responsables de la sincronización por luz de los relojes de las plantas.
En los últimos años se han acumulado evidencias de que el reloj está constituido por proteínas que regulan negativamente la expresión de sus propios genes, constituyendo una retroalimentación negativa de 24 horas de duración.
Los relojes biológicos desempeñan un papel importante en muchos aspectos de la fisiología vegetal y animal, sincronizando acontecimientos internos y externos.